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Abstract

Exact analysis on the in-plane free vibration of simply supported laminated circular arches is carried out based on the

two-dimensional theory of elasticity. The method of separation of variables is employed to expand all the variables into

Fourier series about the longitudinal coordinate, so that the system of partial differential equations is reduced to the

ordinary one about the radial coordinate. The state space method is used to derive a series of simultaneous first-order

differential equations. Due to the variable coefficients posed by the radial coordinate, analytical solutions are rather

unpractical, and hence the approximate laminate model is adopted to translate the state equation into the one with

constant coefficients. The relation between the state vector at the inner and outer surface of the arch is finally obtained

according to the continuity conditions at interfaces and the traction free conditions at the two lateral surfaces. The

formulation is validated by comparing the present results to those available in literature. Effects of geometric parameters

and stacking sequences on the natural frequencies of circular arches are investigated and discussed. Numerical results

presented in this paper provide benchmarks for future analysis of circular arches.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Planar curved beams including circular arches are one of the most predominant components in engineering
structures, such as bridges, turbo-machinery blades, aircraft structures, and so on. Natural frequencies are the
basic and substantial issue for the design and use of such structural components, due to which free vibration of
curved beams has been attracting intensive researches during the past few decades. Free vibration of
homogeneous isotropic curved beams were widely reported and well reviewed in Refs. [1–7], while that for the
orthotropic laminated composite counterparts can be found in Refs. [8–13]. It is established however that the
application of classical arch theory (CAT) is highly confined to slender geometry due to the Kirchhoff
hypothesis where the shear deformation and rotary inertia are neglected [4]. As a result, the deflection is
always under-estimated while the natural frequencies and buckling loads are over-predicted. Although the
first-order arch theories (FOATs) account for such effects [11,12] by regarding the shear deformation as
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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constant through the thickness direction, the accuracy of results are highly dependent on the choice of shear
correction factor and the determination of the latter is a rather cumbersome task. In addition, the FOATs are
only applicable to thin and moderately thick laminates but not to strongly thick arches and that with highly
flexible materials. For strongly thick laminates, Khdeir and Reddy [10] proposed a uniform higher-order arch
theory (HOAT) which can be reduced to CAT, FOAT and second-order arch theory (SOAT) with proper
definition of deformation parameters, while Matsunaga [13] developed a global HOAT in which both in-plane
displacement components are expanded into an infinite series of the thickness-wise coordinate. These HOATs
can practically yield more accurate results than the CAT, FOATs and SOATs, but it looks rather difficult to
interpret physically the terms related to the higher order of the thickness-wise coordinate.

In this paper, an exact solution, based on the two-dimensional (2D) theory of elasticity, is developed for the
in-plane free vibration of circular arches. The arches are assumed simply supported at two ends, for which all
variables are expanded into Fourier series about the longitudinal coordinate. Based on the concept of state
space method [14], the system of partial differential equations is then reduced into an ordinary differential
state equation about the radial coordinate with variable coefficients. For this equation, the approximate
laminate model is employed to translate it into the one with constant coefficients. A unique solution is finally
obtained for the extremely thin artificial layer. The formulations are validated by comparing numerical results
to those available in literature for isotropic and laminated arches. Effects of geometric and material properties
on natural frequencies of laminated composite and functionally graded arches are finally discussed.
2. Basic equations and state space formulations

Consider an m-layered laminated circular arch with a total thickness of H, and each layer having the
thickness of hk, as depicted in Fig. 1. The subtended angle is y0, the radius of the mid-surface of the arch is R0,
and thus the length of the centerline AA0 is L0 ¼ y0R0. The Cartesian coordinate system r–y is established so
that R0 �

1
2
HprpR0 þ

1
2
H, and 0pypy0.

If introducing a new coordinate axis z ¼ r�R0, which is originated from and perpendicular to the centerline
of the arch and has the same positive direction as the r-axis (see Fig. 1), the basic equations of the arch of
orthotropic materials are expresses as

The kinematics equations:

�y ¼
1

R0 þ z

quy

qy
þ

ur

R0 þ z
; �r ¼

qur

qz
; gyr ¼

quy

qz
�

uy

R0 þ z
þ

1

R0 þ z

qur

qy
. (1)

The constitutive equations:

sy ¼ C11�y þ C13�r; sr ¼ C13�y þ C33�r; tyr ¼ C55gyr, (2)
H

A

r (z)
�

R0

L0

A'

O

hm

h1

�0

Fig. 1. Geometry and coordinate system of a circular arch.
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where Cij are the reduced stiffness constants of orthotropic laminated materials determined by the engineering
constants [15].

The equations of motion:

1

R0 þ z

qsy
qy
þ

qtyr

qz
þ

2tyr

R0 þ z
¼ r

q2uy

qt2
;

1

R0 þ z

qtyr

qy
þ

qsr

qz
þ

sr � sy
R0 þ z

¼ r
q2ur

qt2
. (3)

Following the routine job of state space method [14], the above system of equations can be reduced to the
following simultaneous first-order differential equations about z:
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where D ¼ C11 � C2
13=C33. Eq. (4) is the well-known state equation, where uy, ur, sr, tyr are termed as the state

variables, accompanied with which the induced variable is obtained as

sy ¼
D

R0 þ z

quy

qy
þ ur

� �
þ

C13

C33
sr. (5)

For the arch with both ends simply supported, we assume

uy

ur

sr

tyr

8>>><
>>>:

9>>>=
>>>;
¼
X1
n¼1

HUðzÞ cosðnpxÞ

HW ðzÞ sinðnpxÞ

C550Y ðzÞ sinðnpxÞ

C550GðzÞ cosðnpxÞ

8>>>><
>>>>:

9>>>>=
>>>>;
eiot, (6)

where z ¼ z/H, x ¼ y/y0, n is the half-wave number along the y-axis, o the circular frequency, C550 the elastic
constant at the inner surface of the arch, t the time coordinate, and i ¼

ffiffiffiffiffiffiffi
�1
p

the imaginary unit. With the
introduction of Eq. (6), the partial differential equations in Eq. (4) are reduced to the following non-
dimensional state equation of ordinary differential form:

d

dz
dðzÞ ¼MðO; zÞdðzÞ, (7)

where d ¼ U W Y G
� �T

is called the state vector, and the coefficient matrix is

M ¼
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where kn ¼ npks, ks ¼ H/L0, kr ¼ H/R0,Z ¼ 1+krz, O ¼ oH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=C550

p
the non-dimensional frequency, and

r0 the density value at the inner surface of the arch. Here, Eq. (7) is valid for arbitrary individual layer.
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Similarly, the non-dimensional induced variable is

X ðzÞ ¼ �
D

C550

kn

Z
U þ

D

C550

kr

Z
W þ

C13

C33
Y . (9)

It should be noted that the arch becomes a straight beam when the radius of curvature approaches to
infinity, i.e. R0-N. Under this terminal condition, we have kr-0 and Z-1, and all terms in Eq. (8)
containing kr/Z vanish. The state equation in Eq. (7) is therefore reduced to Eq. (29) in Chen et al.’s [16]
governing the motion of a straight beam.

However, for a circular arch with a finite radius of curvature, Eq. (7) is a differential equation of the state
vector d(z) about z with a variable coefficient matrix M, for which it is rather difficult to seek an analytical
solution. To remove the above-mentioned obstacle, the approximate laminate model [17,18] is adopted, in
which the individual layer of the arch is further divided into several sub-layers, each being sufficiently thin
so that for the individual sub-layer the coordinate z can be regarded as constant. With these approximations,
Eq. (7) is then reduced to one with constant coefficient matrix for an individual sub-layer. Supposing that each
layer of the arch is equally divided into p sub-layers, with the layer thickness hk,j ¼ hk/p(j ¼ 1,2,y, p). For the
jth sub-layer, the z-dependent variable Z in Eq. (8) is treated as constant by setting zk;j0 ¼ ðzk;j � zk;j�1Þ=2,
where zk,j is the radial coordinate of the outer surface of the jth sub-layer in the kth layer. In this circumstance,
the state equation for the jth sub-layer is obtained as

d

dZ
dðk;jÞðzÞ ¼Mk;jðOÞdðk;jÞðzÞ, (10)

where Mk,j is now a matrix independent of z, the sub- or superscript ‘k, j’ denotes the jth sub-layer in the kth
layer. The general solution is readily sought as

dðk;jÞðzÞ ¼ exp ðz� zk;j�1ÞMk;jðOÞ
� �

dðk;jÞðzk;j�1Þ, (11)

for zk;j�1pzpzk;j and j ¼ 1; 2; . . . ; p. And, hence, there exists

dðk;jÞo ¼ Tk;jðOÞd
ðk;jÞ
i , (12)

where Tk;jðOÞ ¼ exp½hk;j=R0Mk;jðOÞ� is the transfer matrix of the jth sub-layer, and the subscript ‘o’ and ‘i’
represent the values at the outer and inner surfaces, respectively. With the aid of continuity conditions at the
interfaces of laminated arches and the artificial interfaces between two adjacent sub-layers, the following
relation is obtained:

dðpÞo ¼
Yp

j¼1

Tm;j

Yp

j¼1

Tm�1;j . . .
Yp

j¼1

T2;j

Yp

j¼1

T1;jd
ð1Þ
i ¼ TðOÞdð1Þi , (13)

where T is named as the global transfer matrix. For free vibration, the lateral surface of the arch is traction
free, that is

Y o ¼ Y i ¼ 0; Go ¼ Gi ¼ 0. (14)

Incorporating the boundary conditions in Eq. (14) into Eq. (13) leads to

T31 T32

T41 T42

" #
U

W

� �
i

¼
0

0

� �
o

. (15)

A non-trivial solution to Eq. (15) requires the determinant of the coefficient matrix to vanish, that is

T31 T32

T41 T42

					
					 ¼ 0. (16)

It should be noted that Eq. (16) is a transcendental equation about O2 and can yields an infinite number of
frequency O for a given half-wave number n.
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3. Numerical examples

3.1. Verifications

To validate the correctness and efficiency of the present formulations, numerical results for simply
supported circular arches are compared to those available in literature. Firstly, an isotropic straight beam
(kr ¼ 0) is considered as a particular case. Poisson’s ratio is v ¼ 0.167, and the first ten frequency parameter O
for beams with different aspect ratios are calculated and listed in Table 1. It is obvious that the present results
agree well with that from Timoshenko beam theory [19] for the thin beam, and semi-analytical 2D elasticity
solutions [20] for both thin and thick beams.

Secondly, a circular cross-ply laminated arch with the subtended angle y0 ¼ 1 rad and the stacking sequence
of 901/01 is considered. Each lamina is assumed to have the same thickness and material properties, taken as
EL ¼ ET or EL ¼ 40ET, GLT ¼ GTT ¼ 0.5ET, and vLT ¼ vTT ¼ 0.25, where the subscripts ‘L’ and ‘T’ indicate
the directions parallel and perpendicular to the fiber axis. It should be explained that the material properties of
EL ¼ ET given in Ref. [12] are much like an isotropic material, but the constants E, G and v do not satisfy the
relation E ¼ 2(1+v)G. Here, this set of material properties are also adopted merely for the purpose of
Table 1

Comparisons of the first ten non-dimensional frequencies O ¼ oH
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=C55

p
for simply-supported straight beams (kr ¼ 0)

Mode H/L ¼ 0.1 H/L ¼ 0.3

TBT [19] Semi. [20] Present TBT [19] Semi. [20] Present

1 0.042872 0.042878 0.04288 0.34804 0.34845 0.34841

2 0.16442 0.16451 0.16451 1.1097 1.1130 1.11309

3 0.34804 0.34841 0.34841 1.9974 1.4385 1.43823

4 – 0.47990 0.47990 – 2.0069 2.00688

5 0.57578 0.57675 0.57675 2.9154 2.8612 2.86125

6 0.83311 0.83507 0.83507 3.8361 2.9325 2.93250

7 0.95945 0.95945 – 3.8605 3.86057

8 1.1097 1.1131 1.11309 4.7518 4.1579 4.15795

9 1.3988 1.4039 1.40386 5.6608 4.7662 4.76622

10 – 1.4382 1.43823 – 4.7825 4.78192

Table 2

Comparisons of non-dimensional frequencies l ¼ oL2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=ELI

p
of the first six vibration modes of a two-layered circular arch (901/01,

y0 ¼ 1)

EL/ET H/R0 Results Mode

1 2 3 4 5 6

1 0.1 Present 8.3573 36.205 78.781 113.88 132.19 193.18

[12] 8.3549 36.153 78.547 113.89 131.57 191.96

0.2 Present 8.0985 32.282 56.402 64.300 99.899 108.23

[12] 8.0884 32.124 56.464 63.760 98.806 108.82

0.25 Present 7.9252 30.184 44.790 57.921 85.533 87.551

[12] 7.9088 29.969 44.877 57.292 86.376 86.469

40 0.1 Present 2.9961 11.157 21.064 31.650 42.632 53.902

[12] 3.0816 11.964 23.181 35.118 47.174 59.158

0.2 Present 2.4085 7.5571 13.181 19.039 24.085 25.022

[12] 2.5942 8.3991 14.467 20.426 26.275 29.194

0.25 Present 2.1613 6.4858 11.147 15.962 19.314 20.839

[12] 2.3666 7.1824 12.015 16.725 21.285 21.352
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comparisons and validation of the present formulations. The first six natural frequency parameters l ¼
oL2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=ELI

p
are calculated and compared to that obtained based on Timoshenko theory [12] in Table 2.

Here A and I are the cross-sectional area and the moment of inertia of the arch. Good agreement is again
observed for the arches with EL ¼ ET and different ratio of H/R0, thus further validating the efficiency of the
present solutions. It is seen that the present results for EL ¼ 40ET are much less than those obtained by the
Timoshenko theory. Such deviations do not prove the inefficiency of the present 2D results. On the contrary,
they imply that the Timoshenko-type model is not necessarily sufficient for arches with high flexibility in shear.

3.2. Effects of geometries and stacking sequences

Effects of the stacking sequences and geometric parameters ks(H/L0) and y0 (L0/R0) on the natural
frequencies of cross-ply laminated arches are investigated in this subsection. Shear modulus of the laminates is
taken as GLT ¼ 0.6ET and the other material properties are the same as that in the second validation example
in the previous subsection.

Table 3 presents the fundamental frequency parameters o ¼ oL2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r


ðET H2Þ

q
of laminated arches with

different stacking sequences and the ratio of H/L0 for the given value of y0 ¼ 0.2 rad. Results from the
simplified theories for some stacking sequences available in Khdeir and Reddy [10] are also presented for
comparison and further validate the efficiency of the present formulations. Compared to the present 2D
elasticity solutions, the CAT, SOAT, and the HOAT over-predict the natural frequencies of the considered
laminated arches, which is mainly due to the over-accounting of shear rigidity in all these simplified theories. It
is observed from Table 3 that the frequency parameter increases but with smaller relative increment as the
aspect ratio L0/H increases. With the increasing of layer numbers for a given geometric definition, the
frequency parameter o increases gradually for antisymmetric laminates, but decrease monotonically for
symmetric laminates. The latter is consistent with the physical sense that the bending rigidity of the arch
decreases when reducing the partition of lamina with 0o fiber orientation, while the former indicates that for
an antisymmetric laminates, the bending rigidity can be enhanced by increasing layer numbers. This
phenomenon is further highlighted by the curves of frequency parameter versus layer number for L0 ¼ 5H in
Table 3

Comparisons of non-dimensional fundamental frequencies o ¼ oL2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðET H2Þ

q
of laminated circular arches (y0 ¼ 0.2)

L0/H Results Antisymmetric laminates Symmetric laminate

01/901 [01/901]2 [01/901]5 01/901/01 [01/901]2/01 [01/901]4/01

5 Present 5.7140 7.3546 8.0222 9.1376 8.9820 8.7429

HOATa 6.156 9.190

SOATa 5.893 9.798

CATa 7.174 17.387

10 Present 6.7825 9.9334 10.7908 13.5232 12.8539 12.1567

HOAT 6.961 10.212 10.880 13.586

SOAT 6.863 – – 14.121

CAT 7.288 11.712 12.667 17.597

50 Present 7.2644 11.6130 12.5660 17.3555 15.8292 14.5756

HOAT 7.294 17.427

SOAT 7.290 17.472

CAT 7.310 17.666

100 Present 7.2757 11.6760 12.6351 17.5360 15.9595 14.6772

HOAT 7.303 17.608

SOAT 7.302 17.619

CAT 7.307 17.668

aResults are obtainable in Khdeir and Reddy [10].
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Fig. 2, with indication that the natural frequency of antisymmetric arches are more sensitive to the increasing
of layer number than that of symmetric laminates. Presented in Fig. 2 are also the comparisons of the curves
for two types of antisymmetric laminates, one with the 01 lamina at the inner surface (asterisk marker) and the
other with 901 lamina at the inner surface (circle marker). It is seen that the fundamental frequency of the
former type of antisymmetric arch is higher than the latter, but the variation of frequency against the layer
number is quite similar to each other.

Fig. 3 shows the variations of the fundamental frequency parameters o versus the increasing of the
subtended angle y0 (rad) for circular arches with different thickness-to-length ratios and stacking sequences. In
the figures, the abscissa represents the subtended angle y0 which varies so that 0py0p3, and the ordinate
indicates the frequency parameter o for various y0. It is seen from the figures that the o� y0 curves ascend in
an approximately linear manner when the subtended angles of all considered arches decrease from 3 to 1 rad.
However, when the subtended angles y0 decrease continuously to 0 rad (straight beams), the curves deviate
downward away from the linear trend when y041, that is, the increasing of frequencies slow down when the
arches approaches increasingly toward the straight beams. It is also observed that the slopes of the curves for
L0/H ¼ 20 are largest while those for L0/H ¼ 5 are the smallest. This implies that the thinner the arches, the
more sensitive of the fundamental frequencies are to the variations of the subtended angles. Deep comparisons
between Figs. 3a and c (or Figs. 3b and d) show that, for antisymmetric stacking sequences, the fundamental
frequencies of the arches with 01 laminate closer to the inner surface are slightly higher than those of the arches
with 01 laminate closer to outer surface. In addition, the nonlinearity of the curves between 0py0p1 of the
former arches is more obvious than that of the later arches. Finally, for a same aspect ratio, the fundamental
frequencies of the arches with symmetric stacking schemes (Figs. 3e and f) are greater than those of the
antisymmetric laminated arches (Figs. 3a–d). Furthermore, the former arches attain a more sensitivity to the
changes of the subtended angles than the latter do.

4. Conclusions

Exact two-dimensional elasticity solutions are derived for the in-plane vibration of simply supported
laminated composite circular arches using the state space method. The present state equation is also applicable
to straight beams when setting the radius of curvature to infinite, and was validated by comparing the
numerical results to those obtained in literature. The present method is validated by comparing numerical
results with those obtained for straight, isotropic curved, or laminated curved beams based on other shear
deformable theories. The present 2D solution does not adopt any assumptions about the distribution of
displacements of strains along the thickness direction, and hence, it is applicable for both slender and thick
circular arches.
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Q. Lü, C.F. Lü / Journal of Sound and Vibration 318 (2008) 982–990 989
Effect of thickness-to-length ratio, subtended angle and stacking sequences on in-plane natural frequencies
of circular arches are investigated. It is interesting that antisymmetric laminates with exchanged spatial
location of 01 and 901 lamina behave different versus the variation of subtended angle. Numerical results
presented in this paper are expected to serve as benchmarks for other numerical simulations and simplified
theories for circular arches.
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